Far-field measurement of ultra-small plasmonic mode volume
نویسندگان
چکیده
منابع مشابه
Far-field measurement of ultra-small plasmonic mode volume.
Light-matter interaction can be greatly enhanced in nano-scale plasmonic cavities with tightly confined optical mode, where the mode volume determines the interaction strength. The experimental determination of the mode volume of plasmonic elements is therefore of fundamental importance. Mapping the electric field distribution using near-field scanning optical microscopy (NSOM) may disturb the ...
متن کاملUltra-low voltage, ultra-small mode volume silicon microring modulator.
We show GHz modulation in a 2.5 microm radius silicon micro-ring, with only 150 mV peak-peak drive voltage and an electro-optic modal volume of only 2 microm(3). The swing voltage and the micro-ring modulator are the smallest demonstrations so-far in silicon. The presented approach lays the ground work for a new class of high speed low voltage modulators enabling, seamless integration of nanoph...
متن کاملUltrasmall mode volume plasmonic nanodisk resonators.
We study the resonant modes of nanoscale disk resonators sustaining metal-insulator-metal (MIM) plasmons and demonstrate the versatility of these cavities to achieve ultrasmall cavity mode volume. Ag/SiO2/Ag MIM structures were made by thin-film deposition and focused ion beam milling with cavity diameters that ranged from d = 65-2000 nm. High-resolution two-dimensional cavity-mode field distri...
متن کاملWedge hybrid plasmonic THz waveguide with long propagation length and ultra-small deep-subwavelength mode area
We present a novel design of wedge hybrid plasmonic terahertz (THz) waveguide consisting of a silicon (Si) nanowire cylinder above a triangular gold wedge with surrounded high-density polyethylene as cladding. It features long propagation length and ultra-small deep-subwavelength mode confinement. The mode properties of wedge hybrid plasmonic THz waveguide are comprehensively characterized in t...
متن کاملRobustness of the far-field response of nonlocal plasmonic ensembles
Contrary to classical predictions, the optical response of few-nm plasmonic particles depends on particle size due to effects such as nonlocality and electron spill-out. Ensembles of such nanoparticles are therefore expected to exhibit a nonclassical inhomogeneous spectral broadening due to size distribution. For a normal distribution of free-electron nanoparticles, and within the simple nonloc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2010
ISSN: 1094-4087
DOI: 10.1364/oe.18.006048